Abstract
Nakano’s later modality allows types to express that the output of a function does not immediately depend on its input, and thus that computing its fixpoint is safe. This idea, guarded recursion, has proved useful in various contexts, from functional programming with infinite data structures to formulations of step-indexing internal to type theory. Categorical models have revealed that the later modality corresponds to a simple reindexing of the discrete time scale.

Unfortunately, existing guarded type theories suffer from significant limitations for programming purposes. These limitations stem from the fact that the later modality is not expressive enough to capture precise input-output dependencies of functions. As a consequence, guarded type theories reject many productive definitions.

Combining insights from guarded type theories and synchronous programming languages, we propose a new modality for guarded recursion. This modality can apply any well-behaved reindexing of the time scale to a type. We call such reindexings time warps. Several modalities from the literature, including later, correspond to fixed time warps, and thus arise as special cases of ours.

1 Introduction
Consider the following piece of pseudocode.

\[
\text{nat} = \text{fix } \text{natrec where } \text{natrec } \text{xs } = 0 :: (\lambda x. x + 1) \text{ xs}
\]

This defines nat, the stream of natural numbers, as the fixpoint of a function natrec. How does one make sure that this definition is productive, in the sense that the next element of nat can always be computed in finite time?

Guarded recursion, due to Nakano [27], provides a type-based answer to this question. In type systems such as Nakano’s, types capture precedence relationships between pieces of data, expressed with respect to an implicit discrete time scale. For example, natrec would receive the type natrec : \(\text{Stream Int \rightarrow Stream Int}\). The type Stream Int describes streams which unfold in time at the rate of one new element per step. The later \(\triangleright\) modality shifts the type it is applied to one step into the future; thus, \(\text{Stream Int}\) also unfolds at the rate of one element per step, but only starts unfolding after the first step. Hence, the type of natrec expresses that the \(n\)th element of its output stream, which is produced at the \(n\)th step, does not depend on the \(n\)th element of its input stream, since the latter arrives at the \((n + 1)\)th step. This absence of instantaneous input-output dependence guarantees the productivity of fix natrec.

Guarded recursion enforces this uniformly: fixpoints are restricted to functions with a type of the form \(\triangleright \tau \rightarrow \tau\).

Nakano’s original insight has led to a flurry of proposals [3, 4, 6–8, 13, 20, 21, 26, 31]. Recent developments have integrated several advances—such as clock variables [3] or the constant \(\downarrow\) modality [13]—into expressive languages capturing many recursive definitions out of reach of more syntactic productivity checks. The topos of trees [7] provides an elegant categorical setting where such languages find their natural home.

Unfortunately, guarded recursion is currently limited by the inability of existing languages to capture fine-grained dependencies. Consider the following function, which returns a pair of streams.

\[
\text{natposrec } = \text{fun } (\text{xs}, \text{ys}). (0 :: \text{ys}, \text{map } (\lambda x. x + 1) \text{ xs})
\]

Its fixpoint is productive. This can be seen in the table below, which gives the first iterations of \((\text{nat}, \text{pos}) = \text{natposrec}(\text{nat}, \text{pos})\).

<table>
<thead>
<tr>
<th>nat</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>pos</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>...</td>
</tr>
</tbody>
</table>

Each stream grows infinitely often but only by one element every two steps. The later modality, by itself, cannot capture this growth pattern, and thus this program cannot be expressed as is in the guarded languages we know of. Since natposrec is simply natrec modified to expose the result of a subterm, this shows that existing systems can be overly rigid. Clouston et al. [13, p. 12] give other examples hampered by similar problems.

In our view, the example above does not indicate a problem with guarded recursion per se, but rather illustrates the need for other temporal modalities beyond later (and constant). Like later and constant, these new modalities would apply temporal transformations onto types, reindexing them to change how much data is available at each step. In the example above, one would use a modality expressing growth at even time steps, and another for growth at odd time steps. Moreover, these new modalities should be interrelated, generalizing the known interactions between later and constant.

Contribution
In this paper, we propose a theory of temporal modalities subsuming later and constant. Rather than studying a fixed number of modalities, we merge all of them into a single modality \(\ast\) parameterized by well-behaved reindexings of the discrete time scale. We call such reindexings time warps and speak of the warping modality. The later and constant modalities correspond to specific time warps, and thus arise as special cases of \(\ast\).

We build a simply-typed \(\lambda\)-calculus, Core \(\lambda\ast\), around the warping modality. Core \(\lambda\ast\) integrates a notion of subtyping which internalizes the mathematical structure of time warps. We describe its operational semantics, as well as a denotational semantics in the topos of trees. We show that the type-checking problem for Core \(\lambda\ast\) terms, while delicate because of subtyping, is actually decidable.
2 The Calculus

2.1 Time Warps

Let \(\omega \) denote the first infinite ordinal and \(\omega + 1 \) denote its successor, which extends \(\omega \) with a maximal element \(\omega \). It is technically convenient to see 0 as a special vacuous time step, and thus we assume that \(\omega \) begins at 1. (Clouston et al. [13] follow the same convention.) However, \(\omega + 1 \) still begins with 0. If \(\mathcal{P} \) is a preorder, we denote by \(\bar{\mathcal{P}} \) the set of its downward-closed subsets ordered by inclusion, and write \(y : \mathcal{P} \to \bar{\mathcal{P}} \) for the order embedding sending \(x \) to \(\{ x' \mid x' \leq x \} \). Observe that \(\bar{\mathcal{P}} \) is isomorphic to \(\omega + 1 \), with the isomorphism sending the empty subset to 0 and the maximal subset \(\omega \) to itself in \(\omega + 1 \). Thus, abusing notation, we write \(y : \omega \to \omega + 1 \) for the map sending positive natural numbers to their image in \(\omega + 1 \).

Definition 1 (Time Warps). A time warp is a cocontinuous (sup-preserving) function from \(\omega + 1 \) to itself. Equivalently, it is a monotonic function \(p : \omega + 1 \to \omega + 1 \) such that \(p(0) = 0 \) and \(p(\omega) = \bigcup_{n<\omega} p(n) \).

We write \(p \leq q \) when \(p \) is pointwise smaller than \(q \), that is, when \(p(n) \leq q(n) \) holds for all \(n \). Given time warps \(p \) and \(q \), we write \(p \ast q \) for \(q \circ p \), which is cocontinuous. So is the identity function. Moreover, function composition is left- and right-monotonic for the pointwise order. As a consequence,

Property 1. Time warps, ordered pointwise and equipped with composition, form a partially-ordered monoid, denoted \(W \).

The following time warps play a special role in our development.

\[
\begin{align*}
id(n) &= n \quad 0(n) = 0 \quad -1(n) = n - 1 \quad \omega(n) = \omega \\
\end{align*}
\]

The definitions above are given for \(0 < n < \omega \) since the values at 0 and \(\omega \) follow from cocontinuity. The time warps 0 and \(\omega \) are respectively the least and greatest elements of \(W \).

2.2 Syntax and Declarative Type System

Core \(\lambda^* \) is a two-level calculus distinguishing between implicit terms and explicit terms. Implicit terms correspond to source-level programs. Explicit terms decorate implicit terms with type coercions. Coercions act as proof terms for the typing judgment [9, 16]. They offer a convenient alternative to the manipulation of typing contexts [2, 15]. Structures \(\sigma \in \Sigma(\Gamma, \Gamma') \) are functions from \(\text{dom}(\Gamma) \) to \(\text{dom}(\Gamma') \) such that \(\Gamma'(\sigma(x)) = \Gamma(x) \) for all \(x \in \Gamma \).

Explicit Terms The typing judgment for explicit terms \(e \) of Core \(\lambda^* \) is given in Figure 1. Every typing rule from \(\text{Var} \) to \(\text{Case} \) is a standard one from simply-typed \(\lambda \)-calculus with products and sums. We describe every other rule in turn, introducing the corresponding term formers as we go.

The typing rules for stream destructors (\(\text{head} \), \(\text{tail} \)) and the stream constructor (\(e_1 \to e_2 \)) capture the fact that streams unfold at the rate of one element per step. As a consequence, the tail of a stream exists not now but later. Since the later modality corresponds in our setting to the time warp \(-1\), the result of \(\text{tail} \) and the second argument of \(\text{if} \) must be of type \(*_{-1} \text{Stream} \). Core \(\lambda^* \) terms include scalars from \(S \). A scalar \(s \) is assigned the unique ground type \(\nu \) such that \(s \in \mathcal{S}_\nu \), as specified in rule \(\text{Const} \).

Recursive definitions \(\text{rec} \) (\(x \to e \)) follow the insight of Nakano: the self-reference to \(x \) is only available later in the body, and thus here we receive type \(*_{-1} \text{Stream} \) in rule \(\text{Rcc} \).

The term \(e \) by \(p \) marks an introduction point for the warping modality. Intuitively, it runs \(e \) in a local time scale whose relationship to the surrounding time scale is governed by the time warp \(p \); the nth tick of the external time scale corresponds to the \(p(n) \)th tick of the internal one. Thus, assuming \(e \) has type \(\tau \), then \(e \) by \(p \) has type \(*_p \tau \). This change in the amount of data produced comes at the price of a change in the amount of data consumed: the free variables of \(e \) should themselves be under the \(*_p \) modality. The context \(*_p \Gamma \) denotes \(\Gamma \) with \(*_p \) applied to each of its types.

Explicit terms may include type coercions, applied either covariantly or contravariantly. Covariant coercion application \(\alpha \) applies the type coercion \(\alpha \) to the result of \(e \). Contravariant coercion application \(\beta \) coerces the free variables of \(e \) using the context coercion \(\beta \). We will describe both kinds of coercions in a few paragraphs.

Structure maps Rule \(\text{Struct} \) is the only non-syntax-directed rule in our system. It performs weakening, contraction, and exchange in a single step, depending on the chosen structure map between contexts [2, 15]. Structure maps \(\sigma \in \Sigma(\Gamma, \Gamma') \) are functions from \(\text{dom}(\Gamma) \) to \(\text{dom}(\Gamma') \) such that \(\Gamma'(\sigma(x)) = \Gamma(x) \) for all \(x \in \Gamma \).
The application of a structure map \(\sigma \), seen as a variable substitution, to an explicit term \(e \) is written \(\sigma[e] \).

Type annotations Both \(\lambda \)-abstractions and injections must contain type annotations. This technical choice ensures that explicit terms are in Church style, and makes their typing judgment essentially syntax directed (up to rule `Struct`).

Type Coercions A coercion \(\alpha : \tau < \tau' \) performs a type conversion, transforming input values of type \(\tau \) into output values of type \(\tau' \). The rules for this syntax-directed subtyping judgment are given in Figure 2, where \((\alpha, \alpha') : \tau \equiv \tau' \) is a shorthand for \(\alpha : \tau < \tau' \) and \(\alpha' : \tau' < \tau \). They fit into three groups.

The first group contains the identity coercion and sequential coercion composition. The identity coercion \(\text{id} \) does nothing. Two coercions \(\alpha_1 \) and \(\alpha_2 \) can be composed to obtain \(\alpha_1; \alpha_2 \), assuming the output type of \(\alpha_1 \) matches the input type of \(\alpha_2 \).

The second group contains one coercion former for each type former. Such coercions allow us to coerce values in depth. Their typing rules express that subtyping is a congruence for all type formers in the language.

The third group is where the interest of our subtyping relationship lies. It contains coercions reflecting the mathematical structure of the warping modality as subtyping axioms, including its interaction with other type formers. This group can be divided again, now between several invertible coercions and a non-invertible one.

- Coercions \(\text{wrap} \), \(\text{unwrap} \), \(\text{concat}^{\text{p,q}} \), and \(\text{decat}^{\text{p,q}} \) reflect the monoidal structure of time warps at the type level. The coercions \(\text{dist} \) and \(\text{fact} \) ensure that the warping modality commutes with products. The coercion \(\text{infl} \) expresses that ground types stay constant through time, i.e., \(\nu < \nu \).
- The remaining coercion, \(\text{delay}^{\text{p,q}} : *_p \nu < *_q \nu \), reflects the ordering of time warps. Intuitively, it pushes data further into the future, and must thus ensure that \(p(n) \geq q(n) \) at any step \(n \). Its action cannot be undone when \(p \neq q \); for example, the coercion \(\text{next} \text{"'} \equiv \text{wrap} \text{"'}, \text{delay} \) has no inverse. (This coercion appears an operator in some guarded type theories \([7, 13, \ldots]\).)

Note that we did not need to introduce an explicit inverse for \(\text{infl} \) since one is already derivable as \(\text{delay} \equiv \text{id} \); \(\text{unwrap} : *_\nu \nu < \nu \).

Context Coercions A context coercion \(\beta \) is a finite map from variables to coercions. We have \(\beta : \Gamma < \Gamma' \) if \(\text{dom}(\beta) = \text{dom}(\Gamma') \subseteq \text{dom}(\Gamma) \), and for every variable \(x \in \text{dom}(\Gamma) \), \(\beta(x) \) coerces \(\Gamma(x) \) into \(\Gamma'(x) \). Context subtyping preserves the order of bindings. This definition implies that rule Sub in Figure 1 can only be applied when \(\beta(x) \) is defined for every free variable \(x \) of \(e \).

Implicit Terms and Erasure We define implicit terms, denoted \(\bar{\tau} \), as explicit terms that do not contain any coercions. Each explicit term \(\tau \) thus corresponds to a unique implicit term obtained by removing every coercion present in \(\tau \). We adopt the notations of Mel- lies and Zeilberger \([24]\), and write \(U(e) \) for this implicit term. We also write that \(e \) refines \(\tau \), noted \(e \sqsubseteq \tau \), when \(U(e) = \tau \).

An implicit term is well-typed simply if it has a well-typed refiner, in the sense expressed by the definition below.

\[
\Gamma \vdash \bar{\tau} \iff \exists \bar{\nu}, \Gamma \vdash \bar{\nu} \sqsubseteq \tau
\]

(1)

2.3 Type-Checking Explicit Terms

The language of coercions and explicit terms enjoys uniqueness of typing. The following result reflects this fact for coercions.

Property 2 (Uniqueness of Types for Coercions). For any coercion \(\alpha \), for any type \(\tau \) (resp. \(\tau' \)) there is at most one type \(\tau' \) (resp. \(\tau \)) such that \(\alpha : \tau < \tau' \) holds.

The analogous result for explicit terms is more delicate since rule `Struct` is not syntax-directed. Furthermore, the rule is not admissible: its use is sometimes required in order to be able to use another rule. One can prove that there are only three cases where rule `Struct` is needed, establishing the following result.

Property 3. Any well-typed explicit term \(\Gamma \vdash e : \tau \) has a canonical derivation where rule `Struct` is only used exactly once before every instance of rules `Var`, `Warp`, and `SubL`.

This characterization provides almost immediately an abstract deterministic algorithm to type-check explicit terms; see Appendix B for details. Its correctness implies the expected result.

Property 4 (Uniqueness of Types for Explicit Terms). For any fixed \(\Gamma \) and \(e \), there is at most one type \(\tau \) such that \(\Gamma \vdash e : \tau \).

Type-checking an implicit term \(\tau \) is a much harder problem, since it involves finding a well-typed refiner \(\nu \sqsubseteq \tau \). Moreover, this refiner should be canonical in a certain sense. We study it in Section 5.

2.4 Examples

We finish this section with a few examples illustrating the type system, given mostly as implicit terms. We also assume that ground values and types include the integers.

Example 2.1 (Constant Stream). This prototypical example defines a constant stream of zeroes.

\[
\text{rec} (\text{zeroes} : \text{Stream Int}, 0 :: \text{zeroes}) : \text{Stream Int}
\]

This works as in other guarded-recursive languages: the stream constructor \((_ : \cdots)\) expects its second argument to have a type of the form \(\cdots \text{Stream } \tau \) \((\text{Stream } \tau \) in other guarded type theories), which is exactly the one provided by guarded recursion.

Example 2.2 (Non-productive Stream). The non-productive definition below does not define a stream, which by definition should hold an infinite number of values.

\[
\text{rec} (\text{nothing} : \text{Stream Int}) : \text{nothing} \rightarrow \text{ill-typed!}
\]
This definition is ill-typed in Core λ^* since, in the absence of a coercion φ_0 $\text{Stream } \text{Int} \to \text{Stream } \text{Int}$, we cannot apply rule Rec.

Example 2.3 (Silent Stream). While Example 2.2 does not define a real stream holding an infinite number of values, it could be said to define a “silent” stream holding no value at all. Such streams are captured in Core λ^* as inhabitants of φ_0 $\text{Stream } \tau$, e.g.,

$$
\text{rec (nothing : } \varphi_0 \text{Stream } \text{Int}).\text{nothing : } \varphi_0 \text{Stream } \text{Int}.
$$

This definition is well-typed since the explicit term $\text{rec (nothing : } \varphi_0 \text{Stream } \text{Int}).\text{nothing : } \varphi_0 \text{Stream } \text{Int}$.

Example 2.3 illustrates how Core λ^* shifts the focus away from productivity, seen as a yes-or-no question, to a more quantitative aspect of program execution: the amount of data produced. Other warps make it possible to capture other forms of partial definitions, beyond completely silent streams. For example, writing 5 for the warp sending any finite n to 5, the type φ_2 $\text{Stream } \text{Int}$ describes streams containing only 5 elements, all of them available starting at the first time step. The type system of Core λ^* ensures that the non-existent elements in such partial streams can never be accessed; in particular, in a well-typed program deconstructing a silent stream xs (via head or tail) can only happen under a context of the form $C_1(C_2[-]) \downarrow \varnothing$. We will see in Section 3 that the expression e in $e \downarrow \varnothing$ is never actually executed.

Example 2.4. The example below implements the classic higher-order function map on streams, specialized for streams of integers since Core λ^* is monomorphic. As usual, let $x : \tau = t_1 \in t_2$ is shorthand for $\text{fun (x : } \tau).t_2 t_1$. We assume that function application and by bind tighter than stream construction (\cdot).

$$
\text{rec (map : (Int \to Int) \to Stream } \text{Int} \to Stream } \text{Int}).
$$

Example 2.5. The definition given in Example 2.4, since it is closed, can be put inside a local time scale driven by ω. It thus receives the type φ_ω ($\text{Int} \to \text{Int} \to \text{Stream } \text{Int} \to \text{Stream } \text{Int}$). Such a type is in effect not subject to the context restriction in rule Warp, since for any p we have $\varphi_\omega \tau = \varphi_\omega \tau$. Thus, φ_ω corresponds to the constant \Box modality used in some guarded type theories [13].

In the remaining examples, we represent certain time warps as running sums of ultimately periodic sequences of numbers, following ideas from n-synchrony [14, 29]. For example, the sequence (1^ω) represents the time warp sending $2n$ to n and $2n + 1$ to $n + 1$ for any finite positive n, while the sequence (0^ω) represents the time warp sending both $2n$ and $2n + 1$ to n. All the time warps we have used up to now can be represented in this way: $\text{id}, \varnothing, -1$, and ω are represented by $(1)^\omega$, $(0)^\omega$, $0(1)^\omega$, and $\omega(0)^\omega$ respectively.

Example 2.6 (Mutual Recursion). As announced in Section 1, the streams of natural and positive numbers can be defined in a guarded yet mutually-recursive way in Core λ^*. This is achieved by reflecting the rate at which each stream grows during a fixpoint computation within its type. (In the definition below, we represent the time warp -1 by the sequence $0(1)^\omega$ for consistency; in particular, the types of (\cdot) becomes $\tau \to \varphi_{0(1)^\omega}$ $\to \text{Stream } \tau \to \text{Stream } \tau$.)

$$
\text{rec natpos : } \varphi_{(1^n \omega)} \text{ Stream } \text{Int} \times \varphi_{(0^n \omega)} \text{ Stream } \text{Int}.
$$

Let $\text{nat} : \varphi_{0(1)^\omega} \varphi_{(1^n \omega)} \text{ Stream } \text{Int} = \text{proj}. \text{nat} \text{pos in}$

$$
\text{let pos : } \varphi_{0(1)^\omega} \varphi_{(1^n \omega)} \text{ Stream } \text{Int} = \text{proj}. \text{nat} \text{pos in}
$$

$\text{(0 : pos) by } (0)^\omega, \text{(map (fun (x : } \text{Int}.x + 1) \text{ nat) by } (0(1)^\omega).$

The uses of projections are well-typed since the warping modality distributes over products via the dist_\times coercion. We assume that map has received the type given in Example 2.5, and thus its use below by $0(1)^\omega$ is well-typed. Since $0(1)^\omega \times (1^n)^\omega = (0(1)^\omega)^\omega$, coercing nat by $\text{concat}_0(1)^\omega, (1)^\omega$ gives the type $\varphi_{(0^n \omega)} \text{ Stream } \text{Int}$, which lets us use nat with type Stream Int under by $(0(1)^\omega)^\omega$. For pos, since $0(1)^\omega \times (1^n)^\omega = 0(1)^\omega + (1)^\omega$, applying the coercion $\text{concat}_0(1)^\omega, (1^n)^\omega$; $\text{dec} 0(1)^\omega, (0(1)^\omega)^\omega$ lets us use pos with type $\varphi_{0(1)^\omega} \text{ Stream } \text{Int}$ below by $(0(1)^\omega)^\omega$.

Example 2.7. Clouston et al. [13, Example 1.10] present the Thue-Morse sequence as a recursive stream definition which is difficult to capture in guarded calculi. The productivity of this definition follows from the fact that a certain auxiliary stream function h produces two new elements of its output stream for each new element of its input stream. In Core λ^*, h can be given type $\text{Stream } \text{Bool} \to \varphi_{(2^n \omega)} \text{ Stream } \text{Bool}$, allowing us to implement the Thue-Morse sequence with guarded recursion. (See Appendix A.)

3 Operational Semantics

In this section, we present an operational semantics for explicit terms in the form of a big-step, call-by-value evaluation judgment. Intuitively, the evaluation judgment $e; y \downarrow \nu$ expresses that the value ν is a finite prefix of length n of the possibly infinite result computed by e in the environment γ. We will say that the evaluation of e occurred "at step n", or simply "at $n" following the intuition that n is a Kripke world. Another intuition is that this judgment describes an interpreter receiving a certain amount n of "fuel" which controls how many times recursive definitions have to be unrolled [1].

In most fuel-based definitional interpreters, the fuel parameter only decreases along evaluation, typically by one unit at each recursive unfolding. In our case, its evolution is much less constrained: the amount of fuel may actually increase or decrease by an arbitrary amount many times during the execution of a single term. This behavior follows from the presence of time warps: to evaluate e by p at n, one evaluates e at $\nu(p(n))$. Nevertheless, we show that the evaluation of a well-typed term always terminates regardless of the quantity of fuel initially provided.

Since the evaluation of a term at n might involve the evaluation of one of its subterms at $p(n)$ with p an arbitrary warp, we may need to evaluate a term at 0 or ω. The former case is dealt with using a dummy value stop which inhabits all types at 0. The latter case might seem problematic, as evaluating a term at ω should intuitively result in an infinite object rather than a finite one. We represent such results by suspended computations (thunks) to be forced only when used at a finite n. This is a standard operational interpretation of the constant modality [5, 13].
Thus, we introduce a truncation. Its rules are given in Figure 4.

Most rules apply when \(v \) is to be truncated to a step of the form \(n + 1 \). Scalars contain the same amount of information at all finite steps, and thus remain themselves. The tail \(v_2 \) of a stream constructor \(v_1 : v_2 \) is truncated to \(n \), ensuring that the final stream contains \(n + 1 \) elements. Closures, pairs, and injections are truncated structurally; for closures, we truncate the environment. To truncate a thunk to a positive finite step is to evaluate it, obtaining a finite result; this is why truncation depends on evaluation, defined below. To truncate a value warped by \(p \) at \(n \), truncate it at \(p(n) \).

Finally, truncation to 0 and truncation to \(\omega \) are symmetric. Truncation to 0 erases the value completely, leaving only \(\perp \). Truncation to \(\omega \) keeps the value completely intact.

Coercion Application

The judgment \(\alpha[v] \Downarrow_n \nu' \) expresses that \(\nu' \) is the result of coercing \(\nu \) by \(\alpha \). Its rules are given in Figure 5.

As for truncation, most rules here deal with finite positive \(n \). The identity coercion does nothing, \(\alpha_1; \alpha_2 \) first applies \(\alpha_1 \) then \(\alpha_2 \). The remaining composite coercions apply coercions in depth, as expected; note that \(\#_p \alpha \) applies \(\alpha \) at \(p(n + 1) \). The wrapping (resp. unwrapping) coercion adds (resp. removes) a constructor \(w(id(-)) \).

The coercions \(concat^{\nu,\omega} \) and \(dist^{\nu} \) implement the transformations and commutations corresponding to their types, but have to deal with the cases where \(p(n + 1) = 0 \) or \(p(n + 1) = \omega \) explicitly. The coercions \(decat^{\nu,\omega} \) and \(fact^{\nu} \) are similar but simpler. Inflation creates a dummy thunk around a scalar; this is type safe since scalars are well-typed at any finite \(n \). A delay coercion \(delay^{\nu,\omega} \) receives an input at \(p(n + 1) \) and truncates it to \(\nu(n + 1) \), which is smaller or equal to \(p(n + 1) \) if \(delay^{\nu,\omega} \) is well-typed.

Evaluating a coercion at 0 immediately returns \(\perp \), as for truncation. On the other hand, a coercion applied at \(\omega \) is necessarily applied to a thunk, and must be delayed itself. We accomplish this by pushing the coercion inside the thunk.

We have elided the context-coercion application judgment, which simply lifts coercion application componentwise to environments.

Evaluation

The evaluation judgment is given in Figure 6.

Again, most of the work is done at \(0 < n < \omega \), so we begin by describing the corresponding rules. The rules for variables, functions, application, pairs, projections, injections, pattern-matching, and scalars are the standard ones of call-by-value λ-calculus. We will explain recursion shortly. To evaluate \(e \) by \(p \) at \(n + 1 \), evaluate \(e \) at \(p(n + 1) \). Its result should be warped in \(w(p, \perp) \) to mark its provenance, and symmetrically the environment \(\gamma \) should be purged of a layer of \(w(p, \perp) \) value formers. The latter operation is denoted by \(purg(\gamma) \): it is undefined if \(\gamma \) contains values that are not of the form \(w(p, \perp) \). Coercions rely on the coercion application judgment and its lifting to context coercions.

Recursion and Iteration

Rule ERec depends on the iteration judgment \(x; e; y; \nu \Downarrow^m \nu' \). To explain this judgment informally, let us write \(f \) for \(fun(x: _)e \) and assume that \(m \leq n \). Then, this judgment computes \(\nu' = \nu^m(f) \). Its use in rule ERec with \(m = 0 \) and \(\nu = \perp \) ensures that \(\nu = \perp^{m}(\perp) \). Thus iteration can be viewed as an operational approximation of Kleene’s fixpoint theorem if one identifies \(\perp \) with \(\perp \) from domain theory.

Figure 3. Typing Judgment for Values and Environments

\[
\begin{align*}
[\nu]_n & \Downarrow \nu' \\
[\nu_1, \nu_2] & \Downarrow \nu_1' \oplus \nu_2' \\
[\nu_1 \nu_2] & \Downarrow \nu_1' \bullet \nu_2' \\
[\nu]_l & \Downarrow \nu' \\
[w(p, \perp)] & \Downarrow [w(p, \perp)]
\end{align*}
\]

Figure 4. Truncation of Values

\[
\begin{align*}
[\nu]_n & \Downarrow \nu' \\
[\nu]_l & \Downarrow \nu' \\
[w(p, \perp)] & \Downarrow \perp
\end{align*}
\]
3.3 Metatheoretical Results

Our evaluation judgments represent runtime errors by the absence of a result, as is common in big-step semantics. Thus, our judgments define partial functions: there is at most one value v such that $c; y \Downarrow n v$, and similarly for all the other judgments.

Type Safety The following basic type safety result ensures that if a closed program of type τ evaluates to a value v at n, then v is of type τ at n. Given the typing rules for values, this ensure in particular that streams have the length described by their types.

Theorem 3.1 (Type Safety). If $\Gamma \vdash e : \tau$, $y : \Gamma @ n$, and $c; y \Downarrow n v$, then $v : \tau @ n$.

Since the evaluation judgment depends on the truncation, coercion application, and iteration judgments and vice-versa, the proof must proceed by mutual induction, using the relevant type safety lemmas for auxiliary judgments.

Lemma 3.2 (Type Safety, Truncation). If $\Gamma \vdash v : \tau @ m$ and $\downarrow v @ n$, then $v : \tau @ n$.

Lemma 3.3 (Type Safety, Coercion Application). If $\alpha : \tau < : \tau'$, $v : \tau @ n$, and $\alpha[v] \Downarrow n v'$, then $v' : \tau' @ n$.

Lemma 3.4 (Type Safety, Iteration). If $\Gamma, x : \ast_m @ e : \tau, y : \Gamma @ n$, $v : \tau @ m$ and $x ; e ; y \Downarrow m v'$, then $v : \tau @ n$.

Totality In addition to the usual type errors, our setting partiality may also arise from time-related operations. For instance, a term might try to truncate a value a to $m > n$, or to evaluate e by p in an environment which contains values that are not of the form $w(p, ___)$. The following theorem asserts that this cannot occur with well-typed terms.

Theorem 3.5 (Totality). If $\Gamma \vdash e : \tau$ and $\Gamma \vdash n$, then there exists v such that $c; y \Downarrow n v$.

The proof uses a realizability predicate, as explained in Appendix B. It also requires the following result, also used in Section 4.

Property 5 (Functionality of Truncation). If $\downarrow v @ m$, then $\downarrow v @ m$ with $\downarrow v @ m$.
Monotonicity Finally, we prove that evaluation indeed computes longer and longer prefixes of the same object.

Property 6 (Monotonicity). If $v, v' \subseteq_n v$ and $v, v' \subseteq_m v'$ with $m \leq n$ and $| \gamma |_m \subseteq | \gamma |',$ then $v, v_m \subseteq v'.$

Coherence We have defined evaluation only on explicit terms, and indeed coercions play a crucial role in determining the result of a computation. Thus the question of coherence arises: do all refiners of the same implicit term having the same type compute the same results? We give a positive answer to this question in Section 5 using the denotational semantics developed in the next section.

4 Denotational Semantics

4.1 Preliminaries

Let Bool denote the category with two objects \bot, \top and a single non-identity morphism $m : \bot \rightarrow \top$ and equipped with the strict monoidal structure given by conjunction. Then, preorders are Bool-enriched categories, and \hat{P} is isomorphic to $P^{\text{op}} \rightarrow \text{Bool}.$ Let P denote the strict monoidal functor $\text{P} : \text{Bool} \rightarrow \text{Set}$ sending \bot to \emptyset and \top to $\{∗\}$. We write $P[P]$ for the degenerate category associated with a preorder P; its hom-sets contain at most one morphism.

Given a category \mathcal{C}, we denote by $\mathcal{C}^{\text{op}} \rightarrow \text{Set}$ the category of contravariant presheaves over \mathcal{C}. Note that \hat{P} differs from $P[P]$, hence our unusual choice of to formally distinguish preorders from ordinary categories.

4.2 The Topos of Trees

In this section we sketch a model of Core λ^* in the topos of trees. Birkedal et al. [7] show that this category is a convenient setting for modeling guarded recursion and synthetic step-indexing. We follow their terminology and notations.

Definition 2. The topos of trees, denoted S, is $\hat{P}[\omega]$.

Briefly, an object X in the topos of trees can be described as a family of sets $(X(n))_{n \in \omega}$, together with a family of restriction functions $(r^n_x : X(n+1) \rightarrow X(n))_{n \in \omega}$. The set $X(n)$ describes what can be observed of X at step n, and the restriction functions define how future observations extend current ones. Morphisms $f : X \rightarrow Y$ are collections of functions $(f_n : X(n) \rightarrow Y(n))_{n \in \omega}$ commuting with restriction functions.

As a topos, this category naturally has all the structure required for interpreting simply-typed λ-calculus with products and sums.

$\beta : S \times S \rightarrow S$
$\gamma : S \times S \rightarrow S$
$\lambda : S^{\text{op}} \times S \rightarrow S$

This structure follows from general constructions in presheaf categories. Products and sums, as limits and colimits, are given pointwise. Exponentiation can be deduced from the Yoneda lemma.

The later modality is interpreted in S by the functor \Box such that $(\Box X)(0) = \{∗\}$ and $(\Box X)(n+1) = X(n).$ A certain family of morphisms $\text{fix}_X : \Sigma^{\Box X} \rightarrow X$ of S provide fixpoint combinator, and are used to interpret guarded recursion. We refer to Birkedal et al. [7] for additional information.

4.3 Interpreting the Warping Modality

In order to interpret the warping modality, we need to equip the topos of trees with a functor $\ast : S \rightarrow S$ for every time warp p. Intuitively, $(\ast_p X)(n)$ should contain "p-times" more information than $X(n)$. Moreover, the family of functors $\ast(p)_n$ should come equipped with enough structure to interpret atomic coercions.

Pulling Presheaves along Functions To understand what this operation should look like, let us first consider a restricted class of time warps. By definition, time warp p such that $0 < p(n) < \omega$ for all $0 < n < \omega$ are in a one-to-one correspondence with monotonic functions $f : \omega \rightarrow \omega$. In this case, one can simply define $(\ast_p X)(n) = X(f(n)).$ Thus, if p happens to be equivalent to a function $\omega \rightarrow \omega$, the functor $\ast_p : S \rightarrow S$ is simply given by precomposition with p. From a categorical logic perspective, computing $\ast_p X$ corresponds to pulling X along p.

This special case already captures some examples from the literature. For instance, Birkedal et al. [7] study the left adjoint \bullet of ∇ given by $(\bullet X)(n) \triangleq X(n+1)$, which would thus correspond to $\ast_{n \rightarrow n+1}.$ However, most interesting time warps are not ω-valued, including those corresponding to the later and constant modalities, and thus cannot be naively precomposed with presheaves from S.

Pulling Presheaves along Distributors A solution to the above problem is provided by the theory of distributors, which are to functors what relations are to functions. A distributor $P : \mathcal{C} \rightarrow \mathcal{D}$ is a functor $P : \mathcal{C}^{\text{op}} \times \mathcal{C} \rightarrow \text{Set}.$ Distributors form a (bi)category, and enjoy properties that plain functors lack. We refer to Bénabou [10] for an introduction.

Any presheaf $X : \mathcal{C}^{\text{op}} \rightarrow \text{Set}$ is by definition equivalent to a distributor $1 \equiv \mathcal{C}$, with 1 the category with a single object and morphism. Postcomposing a distributor $M : \mathcal{C} \equiv \mathcal{D}$ with X gives a presheaf $MX : 1 \equiv \mathcal{D}$ which, intuitively, is X pushed along M. It is a crucial characteristic of distributors that post-composition with M always has a right adjoint, which we will write $X/M.$ This right adjoint can be described by the end formula

$$X/M \triangleq \int_{d \in \mathcal{D}} X(d)^{M(d,-)}.$$ (2)

The presheaf X/M is the result of pulling X along M, as recently expounded by Melliès and Zeilberger [25].

Pulling Presheaves along Time Warps We can extend the construction given above to time warps by realizing that the latter are miniature distributors.

It is a consequence of the Yoneda lemma that every distributor $\mathcal{C} \equiv \mathcal{D}$ can be seen as a cocontinuous functor $\mathcal{C} \rightarrow \mathcal{D}$ and vice-versa. A similar result holds for preorders: every cocontinuous function $\mathcal{P} \rightarrow \mathcal{Q}$ corresponds to a monotonic function $\mathcal{P}^{\text{op}} \times \mathcal{P} \rightarrow \text{ Bool}$, and vice-versa. We call such functions linear systems, adopting the terminology attributed to Winskel by Hyland [19, §4.1]. Given a time warp $p : \omega \rightarrow \omega$, we refer to the corresponding linear system as $\mathcal{P} : \omega \rightarrow \omega$. We have $(m,n) \in \mathcal{P}$ if and only if $y(m) \leq p(y(n))$.

Pulling a presheaf along a time warp is now possible since linear systems are nothing but Bool-enriched distributors. Precomposing the linear system \mathcal{P} with $P : \text{ Bool} \rightarrow \mathcal{Set}$, we obtain a standard distributor $\mathcal{P} \nabla P : \omega \rightarrow \omega,$ which we then combine with Equation (2).

Definition 3 (Warping Functor). Given a time warp p, we define the warping functor $\ast_p : S \rightarrow S$ as

$$\ast_p \triangleq (\cdot / (\mathcal{P})$$ (3)

Unfolding and simplifying the above definition, we obtain an explicit formula for the observations of $\ast_p X$ at n.

$$(\ast_p X)(n) = \left\{ (x_m) \in \prod_{m=1}^{p(n)} X(m) \mid x_m = r_m^X(x_{m+1}) \right\}$$ (4)
The reader may check using the above formula that \((\ast_{-1} X)(n)\) coincides with \(\triangleright X(n)\). The same is true for \(\ast_{\omega}\) and \(\cdot\).

Once the relatively intuitive Equation (4) has been found, it might seem that the abstract Definition 3 becomes unnecessary. However, the abstract approach gives insight into the structure of \(\ast_{-1}\). In particular, routine categorical considerations imply the following.

Property 7. Warping defines a strong monoidal functor

\[\ast_{-1} : \mathcal{W}^\text{op}(0, 1) \to \text{End}(S). \]

Here \(\mathcal{W}\) and \(\text{End}(S)\) are considered as monoidal categories whose objects are respectively time warps and endofunctors of \(S\), and where the monoidal structure is given by composition in both cases. The category \(\mathcal{W}\) is preordered. Property 7 entails the existence of the following structure.

\[*_{p} *_{q} : *_{q} \to *_{q} \quad \epsilon : *_{1} \cong I d \quad \mu^{\psi} : *_{p} *_{q} \cong *_{p} *_{q} *_{q} \]

Moreover, every functor \(*_{p} \) is a right adjoint, hence limit-preserving.

4.4 The Interpretation

Ground types are interpreted using the functor \(\Delta : \text{Set} \to S\) mapping every set to a constant prephase. The interpretation of Stream \(\tau\) is characterized by \([\text{Stream}\, \tau][n] = \bigoplus_{m=1}^{n}[\tau](m)\). We have already given the interpretation of all other types. Typing contexts are interpreted as cartesian products.

Coercions \(\alpha : \tau < : \tau'\) give rise to morphisms \([\alpha] : [\tau] \to [\tau']\). Composite coercions are interpreted by the functorial actions of type constructors, plus plain composition. Atomic coercions take advantage of the structure arising from Property 7. For example, \([\text{concat}^{\psi,q} : *_{p} *_{q} \tau < : *_{p} *_{q} \tau] = p \cdot [\tau]\) and \([\text{delay}^{\psi,q} : *_{p} \tau < : *_{q} \tau] = (p *_{q})[\tau]\). The inflate coercion is interpreted by the general isomorphism between \(\Delta(S)\) and \(\ast_{\omega} \Delta(S)\). The dist\(_{\lambda}\) and fact\(_{\lambda}\) coercions are interpreted by the natural isomorphisms arising from the limit-preservation property of \(*_{p} \).

Since the type system of Figure 1 is not exactly syntax-directed, we will interpret typing derivations rather than terms. Guarded recursion is interpreted using the fixed-point morphisms. We interpret structure maps \(\sigma : \Sigma(\Gamma; \Gamma')\) as morphisms \([\sigma] : [\Gamma] \to [\Gamma']\) and rule STRUCT by precomposition. Other cases are standard [22].

Property 8 (Coherence for Explicit Terms). Any two derivations of \(\Gamma \vdash e : \tau\) are interpreted by the same morphism in \(S\).

The proof shows that the interpretation of any derivation of \(e\) is equal to the interpretation of the canonical derivation for \(e\) built in Property 3. Since this canonical derivation is unique, this entails the coherence of the interpretation for explicit terms.

4.5 Adequacy

The interpretation reflects operational equivalence, which in Core \(\lambda^v\) consists in observing scalars at the first step.

Theorem 4.1. If \(\Gamma \vdash e : \tau\) then \(\Gamma \vdash e \equiv_{\text{ctx}} e' : \tau\).

To prove the result, we remark that the values described in Section 3 can be organized as an object of \(S\), using results such as Property 6. The details can be found in Appendix B.

5 Algorithmic Type Checking

The abstract type-checking algorithm we present in this section builds an explicit term from an implicit one in a canonical way. This involves two main challenges: deciding the subtyping judgment, and dealing with the context restriction arising in rule Warp.

5.1 Deciding Subtyping

To decide subtyping, we start with the observation that most atomic coercions \(\alpha : \tau < : \tau'\) from Figure 2 come in pairs, in the sense that there exists \(\alpha^{-1}\) such that \(\alpha^{-1} : \tau' < : \tau\). This is even true for inflate, since we can take \(\text{inflate}^{-1}\) to be \(\text{delay}^{\psi,q}\) unwrap. The only atomic coercion for which this is not the case is \(\text{delay}^{\psi,q}\) when \(q < p\). This suggests dealing with delays separately.

Normalizing Types To deal with invertible coercions, we define a function \(\tau\) mapping each type to an equivalent but simpler form. Such normal types \(\tau\) obey the following grammar:

\[
\tau_n := \tau^p \tau' | \tau^p \times \tau^n | \tau^p \leq \nu | \text{Stream} \tau^n | \tau^p \to \tau^n | \tau^p + \tau^n
\]

In other words, normal types feature exactly one warping modality immediately above every non-product type former.

The total function \(\mathcal{f}\) returns the normalized form of \(\tau\). It is defined by recursion on \(\tau\) in Figure 8-A. For every \(\tau\), there are coercions \(\mathcal{f}(\tau)_{\text{in}}, \mathcal{f}(\tau)_{\text{out}}\), defined in Appendix A.

Deciding Precedence We now decide subtyping in the special case where the only atomic coercions allowed are delays, a case we call precedence. The corresponding partial computable function \(\text{Prec}(\cdot; \cdot)\), when defined, builds a coercion \(\text{Prec}(\tau; \tau') : \tau < : \tau'\).

It is given in Figure 8-B. In the absence of \(\text{concat}^{\psi,q}\) and \(\text{decap}^{\psi,q}\) coercions, it is enough to traverse \(\tau\) and \(\tau'\) in lockstep, checking whether \(p \geq q\) holds when comparing \(\ast p\, \tau\) and \(\ast q\, \tau'\).

Putting it all together We decide subtyping in the general case by combining precedence with normal:zation:

\[
\text{Coef}(\tau; \tau') \triangleq \mathcal{f}(\tau)_{\text{in}} \mathcal{f}(\tau')_{\text{out}} \cdot \text{Prec}(\mathcal{f}(\tau); \mathcal{f}(\tau')); \mathcal{f}(\tau')_{\text{out}}.
\]

We write \(\text{Coef}(\Gamma; \Gamma')\) for the pointwise extension to contexts.

5.2 Adjoint Typing Contexts

Consider the type-checking problem for \(t \to p\) in a given context \(\Gamma\). If every type \(\tau = \Gamma(x)\), with \(x\) a free variable of \(t\), is of the form \(\ast p\, \tau^0\), we may apply rule Warp. Otherwise, we have to find a type \(\tau'\) such that \(\tau < : \ast p\, \tau'\). There are several choices for \(\tau'\), and they are far from equivalent. For instance, taking \(\tau' = \ast q\, \tau\) would work since \(\tau < : \ast q\, \tau < : \ast p\, \ast q\, \tau\) always holds, but will in general impose artificial constraints on the type of \(t\). For \(\tau'\) to be a canonical choice, \(\tau' \equiv p \tau'' \Rightarrow \tau' < : \tau''\) (5) needs to hold for any type \(\tau''\). Now, assume that \(\tau\) and \(\tau''\) are normal types which are not products, and thus necessarily start with a warping modality. Equivalence (5) becomes

\[
\ast q\, \tau < : \ast p\, \ast r\, \tau'' \Rightarrow \tau' < : \ast r\, \tau''.
\]

Then, a solution satisfying (5) is given by \(\tau' = \ast q\, \nu \parallel \tau\) with \(q \parallel p\) a hypothetical time warp such that

\[
r \parallel p \leq q \equiv r \leq q \parallel p.
\]

We are thus looking for an operation \(\parallel\) right adjoint to precomposition \((\cdot) \circ p\). Right adjoints to precomposition (and postcomposition, cf. Section 4) always exist for distributors [10, §4], and thus linear systems. The general formula, specialized to linear systems and time warps, gives

\[
(q \parallel p)(n) = p(\min\{m \in \omega \mid 1 \leq m \leq q(m)\}).
\]
Thus, we define normal-type division as

\[(r_1 \times r_2) \nRightarrow p = (r_1 \nRightarrow p) \times (r_2 \nRightarrow p)\]

and general type division as \(r \nRightarrow p \triangleq (r_1)_{n \Rightarrow} p\).

5.3 The Algorithm
The partial computable function \(Elab(\Gamma, \tau)\) returns a pair \((\tau, e)\) with \(\varepsilon \subseteq \tau\) such that \(\Gamma \vdash e : \tau\) holds. Its definition is given in Figure 9. It uses the algorithmic subtyping judgment when type-checking destructors, and the context division judgment when applying rule \(WARP\). The case of pattern-matching relies on the existence of type suprema, which are easy to compute structurally for normal types; see Appendix A.

5.4 Metatheoretical Results

Lemma 5.1. If \(\alpha \vdash \tau \ll \tau'\) then \(\text{Coer}(\tau; \tau')\) is defined and

\[\ll\alpha : \tau \ll \tau'\]

Theorem 5.2 (Completeness of Algorithmic Typing). If \(\Gamma \vdash e : \tau\), there is \(e^m, e^m, a^m\) with \((e^m, e^m) = \text{Elab}(\Gamma, \tau), a^m : \tau^m \nRightarrow \tau,\) and

\[\ll\Gamma \vdash e : \tau^m\]
\[\ll\alpha : \tau^m \ll \tau\]

The fact that algorithmic subtyping is deterministic together with Lemma 5.1 and Theorem 5.2 immediately entails coherence.

Corollary 1 (Denotational Coherence). For any \(e_1, e_2 \subseteq t\) such that \(\Gamma \vdash e_1 : \tau\) and \(\Gamma \vdash e_2 : \tau\), we have \(\ll\Gamma \vdash e_1 : \tau\ll\Gamma \vdash e_2 : \tau\).

Corollary 2 (Operational Coherence). For any \(e_1, e_2 \subseteq t\) such that \(\Gamma \vdash e_1 : \tau\) and \(\Gamma \vdash e_2 : \tau\), we have \(\Gamma \vdash e_1 \equiv_{cte} e_2 : \tau\).

6 Discussion and Related Work
6.1 Guarded Type Theories

Expressiveness. On the one hand, Core \(\lambda^\ast\) captures finer-grained temporal information than existing guarded type theories, and also recasts their modalities in a uniform setting. We illustrate this point by comparing Core \(\lambda^\ast\) to the gl\(^\ast\)-calculus [13], since they are relatively close. The later and constant modality correspond respectively to \(*_{\ast - 1}\) and \(*_{\ast \omega}\). The gl\(^\ast\)-calculus operations next: \(\tau \rightarrow \Rightarrow\) \(\tau\) and unbox: \(\ll\tau \rightarrow \tau\) correspond to the coercions \(\text{wrap} : \text{delay}_{\ast \omega} : \ll\tau\) and \(\text{delay}_{\ast \omega} : \ll\tau\rightarrow \ll\tau\). Erasing later modalities in the gl\(^\ast\)-calculus happens via the term former prev, which restricts the context to be constant (essentially, under \(\ll\)) in Core \(\lambda^\ast\), this would arise from the implicit type equivalence \(\ast_{\ast - 1} \Rightarrow \tau \equiv \ast_{\ast - 1} \Rightarrow \tau \equiv \ast_{\ast \omega} \Rightarrow \tau\). Additionally, the introduction rule for \(\ll\) in the gl\(^\ast\)-calculus is more restrictive than rule \(WARP\) for \(\tau\) by \(\omega\), since the latter allows the free variables of \(\ll\) to have types \(\ast_{\ast \omega} \Rightarrow \tau\) where \(\tau\) is constant but not necessarily \(\omega\). The gl\(^\ast\)-calculus makes \(\ll\) into an “applicative functor” [23], implementing only the left-to-right direction of the type isomorphism \(\ast_{\ast - 1} \Rightarrow \tau \equiv \ast_{\ast - 1} \Rightarrow \tau\). In Core \(\lambda^\ast\), both directions are definable, the right-to-left one as

\[\text{fun}(\ell : \ast_{\ast - 1} \Rightarrow \tau) \rightarrow (\text{fun}(\ell : \tau_1, \ell_2) \rightarrow (\text{fun}(\ell \rightarrow +1) \rightarrow -1))\]

where \(+1\) is the is time warp which is left adjacent to \(-1\) (\(\ll\) in [7]).

On the other hand Core \(\lambda^\ast\) lacks many features present in other guarded type theories (including the gl\(^\ast\)-calculus). It would be useful, for instance, to replace the fixed stream type with general guarded recursive types [7, 13]; this requires designing a guardedness criterion in the presence of the warping modality. Clock variables [3] would allow types to express that unrelated program pieces may operate within disjoint time scales. Core \(\lambda^\ast\) enjoys decidable type-checking, but not type-inference; in contrast, type inference for the later modality has been studied by Severi [31]. Finally, Core \(\lambda^\ast\) might be difficult to extend to dependent types, since it is inherently call-by-value, whereas several dependent type theories with later have been proposed [6, 8].

Metatheory. Core \(\lambda^\ast\) also stands out among guarded type theories by the design of its metatheory. First, as mentioned above, its semantics fixes a call-by-value evaluation strategy, in contrast with actual calculi enjoying unrestricted \(\beta\)-reduction. We believe that this is natural since \(\ell\) by \(p\) is in essence an effectful term which modifies the current time step.

Second, the context restriction in rule \(WARP\) is perhaps controversial from a technical perspective. This kind of rule, acting on the left of the turnstile, is normally avoided in natural-deduction presentations as it is known to cause “anomalies” [28], e.g., breaking substitution lemmas. Since Core \(\lambda^\ast\) is call-by-value, we do not need substitution to hold for arbitrary terms. We do not expect difficulties in proving a substitution lemma for values in a variant of Core \(\lambda^\ast\) where they have been made a subclass of expressions, defining \((\text{fun}(\ell \times p(x) \rightarrow \ell)) \rightarrow (\text{fun}(\ell \rightarrow -1))\) by \(p\), with \(\text{purge}(\ell)\) defined as in Section 3.

Third, Core \(\lambda^\ast\) uses subtyping, which has been eschewed by guarded type theories after Nakano’s original proposal. Yet, the context restriction of rule \(WARP\) makes subtyping extremely useful in practice. In its absence, terms would have to massage the typing context before introducing the warping modality. Guarded recursion would also be more difficult to use without the ability to reason up to time warp composition.

6.2 Synchronous Programming Languages

Core \(\lambda^\ast\) is a relative of synchronous programming languages in the vein of Lustre [11, 12, 14, 17, 18, …]. Such languages use “clocks” (not to be confused with clock variables) to describe stream growth;
such a clock is a time warp whose image forms a downward-closed subset of ω (except in [18]). Synchronous languages are generally first-order, with exceptions [18, 30], and separate clock absence from productivity checking. As a result, λs is both more flexible and simpler from a metatheoretical standpoint. However, it does not enforce bounds on space usage, in contrast with synchronous languages or the work of Krivine [20, 21].

Acknowledgements

This work has benefited from discussions with many researchers, including Albert Cohen, Louis Mandel, Paul-André Melliès, and Marc Pouzet. It owes an especially great debt to Paul-André Melliès, who introduced the author to the topos of trees.

References

A Supplementary Material

A.1 Coercions to and from Normal Types

The coercions \(\overline{\tau} \) are defined in Figure 10. They are defined in a symmetric way, except a slight discrepancy in the case of ground types: one must take \(\overline{\tau} \) as an inverse to \(\overline{\tau} \), as mentioned in Section 2.

A.2 Type Bounds

The type-checking and elaboration algorithm presented in Figure 9 relies on the computation of type suprema. Figure 11 defines such suprema and infima for normal types. The general case is obtained simply by defining \(r_1 \sqcup r_2 \) as \(\overline{\tau_1} \sqcup \overline{\tau_2} \).

A.3 Additional Examples

Example A.1 (Natural Numbers). The stream of natural numbers described in Section 1 can be implemented as follows.

\[
\text{rec (nat : Stream Int) : } \map \text{(fun (x : Int). x + 1) nat) by } -1
\]

We assume again that map has the type obtained in Example 2.5.

We now give the complete definition of the Thue-Morse sequence discussed in Example 2.7. Following Clouston et al. [13], our definition proceeds in two steps: first the function \(h \), then the sequence \(tn \) itself. We assume that the language has been extended with booleans and a not function.

Example A.2. Informally, the function \(h \) takes a boolean stream and intersperses it with its pointwise negation.

\[
\text{rec (h : Stream Bool } \rightarrow \star (\overline{\tau}) \rightarrow \text{Stream Bool).}
\]

\[
\text{fun (xs : Stream Bool).}
\]

\[
\text{let x : Bool } = \text{head xs in}
\]

\[
\text{let y : Bool } = \text{head xs and ys : } \star \overline{\text{nat}} \text{Stream Bool } = \text{tail ys in}
\]

\[
\text{let zs : } \star \overline{\text{nat}} \text{Stream Bool } = (h y s) by \text{-1 in }
\]

\[
(x : ((\not x) :: x) s) by 0 (1) \rightarrow (2)^n
\]

As in previous examples, the recursive call happens under by 0 (1)\(^n\), ensuring it does not happen at the first time step. Since \(x \) is of a scalar type, it is in effect not subject to the context restriction in rule \(\text{WARP} \); for example, we have

\[
\text{infix} ; \text{delay}(0)^n ; \text{un} \wr (2)^n ; \text{Boo} ; \text{in}
\]

To see why the use of zs at type \(\star \overline{\text{nat}} \text{Stream Bool} \) is well-typed, observe that 0 (2)\(^n\) \(\setminus \) (2)\(^n\) = 0 (2)\(^n\) and

\[
\star \overline{\text{nat}} \rightarrow \star (\overline{\tau}) \rightarrow \text{Stream Bool } = \star (\overline{\text{nat}} \text{Stream Bool})
\]

\[
\star \overline{\text{nat}} \rightarrow \star (\overline{\tau}) \rightarrow \text{Stream Bool } = \star (\overline{\text{nat}} \text{Stream Bool})
\]

\[
\star (\overline{\text{nat}} \rightarrow \star (\overline{\tau}) \rightarrow \text{Stream Bool})
\]

\[
\text{false } : (\text{tail } tm) \rightarrow 0 (1)^n
\]

The key subterm is (tail \(tm \)) \(\rightarrow 0 (1)^n \). Informally, this allows us to run \(tm \) twice at the second time step, obtaining one element out of \(tm \). Technically speaking, the use of \(tm \) with type \(\star (\overline{\text{nat}} \text{Stream Bool}) \) is justified by 0 (2)\(^n\) \(\setminus \) 0 (2)\(^n\) = 0 (2)\(^n\) and

\[
\star (\overline{\text{nat}} \rightarrow \star (\overline{\tau}) \rightarrow \text{Stream Bool})
\]

\[
\text{false } : (\text{tail } tm) \rightarrow 0 (1)^n
\]

where the last step is performed by \(\text{delay}(0)^n ; \text{un} \wr (1)^n \). This last step shows that the productivity of this definition only depends on the fact that \(h \) can produce its first two output elements from its

first input element. Indeed, this definition still type-checks when \(h \) is given the strictly weaker type

\[
h : \text{Stream } \mathbb{B} \to *_{2(1)^\omega} \text{ Stream } \mathbb{B},
\]

assuming one changes the type annotation for \(\text{tm}' \).

A.4 Effective Time Warps

The main body of this paper manipulates time warps as abstract mathematical objects. In an implementation, one may choose a subset of time warps enjoying finite representations and equipped with computable operations. We will say that such a subset is effective.

Definition 4 (Effectivity). A set \(\mathcal{E} \) of time warps is effective when it contains \(\text{id}, 0, -1, \) and \(\omega \), is closed under composition, division, binary suprema, and binary infima, and is equipped with effective procedures for

- the aforementioned operations;
- computing \(p(n) \) for \(p \in \mathcal{E}, n \in \omega + 1 \);
- deciding the pointwise order between its elements.

Any effective set of time warps \(\mathcal{E} \) determines a submonoid of \(\mathcal{W} \).

Furthermore, the decidability of \(\subseteq \) entails the decidability of equality between the elements of \(\mathcal{E} \) by antisymmetry. As a consequence, the big-step evaluation judgment from Section 3 and abstract type-checking algorithm from Section 5, restricted to an effective set of time warps, become implementable.

A.5 Ultimately Periodic Sequences

In Section 2.4, we have represented certain time warps as running sums of ultimately periodic sequences. We now study this classic idea [14, 29] more formally, showing that the set \(\mathcal{P} \) of time warps representable as such sequences is effective.

Given two finite lists \(u, v \) of elements of \(\omega + 1 \), with \(v \) non-empty, we denote by \(u(v)^w \) the ultimately periodic sequence starting with \(u \) and continuing with \(v \) repeated \(\omega \) times.

We say that \(u \) and \(v \) are the prefix and periodic pattern of \(u(v)^\omega \), respectively. Let \(u(v)^\omega \) denote the \(n \)-th element of the sequence, starting at 0.

Definition 5. Every ultimately periodic sequence \(u(v)^\omega \) gives rise to a time warp characterized in a unique way by

\[
u(v)^\omega(1 + n) = u(v)^\omega[n] + u(v)^\omega(n).
\]

Distinct prefix/periodic pattern pairs can represent the same ultimately periodic sequence; for example \((1)^\omega, (1 0 1)^\omega \), and \((1 0 1)^\omega \) all represent the same sequence. Furthermore, distinct ultimately periodic sequences can represent the same time warp in the presence of \(\omega \); for example, \(\omega(0)^\omega \), \(\omega(1)^\omega \), and \(\omega(\omega)^\omega \) all represent \(\omega \). This gives rise to an equivalence relation between prefix/periodic pattern pairs; we never distinguish between equivalent pairs.

Property 9. The set of time warps \(\mathcal{P} \) is effective.

Rather than give a proof of this statement, we will provide intuitions and examples.

Common Representations The time warps \(\text{id}, 0, -1, \) and \(\omega \) are respectively represented by \((1)^\omega, (0)^\omega, 0 (1)^\omega \), and \((\omega)^\omega \). The time warp \(+1 \), which corresponds to \(n \mapsto n + 1 \) (in [7]), is represented by \(2 (1)^\omega \). Any constant time warp \(n \mapsto c \) for \(0 < n < \omega \) is represented by \(c (0)^\omega \).

Composition To show that \(\mathcal{P} \) is closed under composition, we build an infinite sequence \(s \) representing \(u_1(v_1)^\omega * u_2(v_2)^\omega \) by traversing \(u_1(v_1)^\omega \) and \(u_2(v_2)^\omega \). There are two cases, depending on the next element of \(u_1(v_1)^\omega \), which we call \(n \).

- If \(n < \omega \), the next element of \(s \) is \(\sum_{i=1}^{n} m_i \) with \(m_1, \ldots, m_n \) the next \(n \) elements of \(u_2(v_2)^\omega \). We then continue building the rest of \(s \) recursively, dropping \(m_1, \ldots, m_n \).
- If \(n = \omega \), the next element of \(s \) is the sum of all the remaining elements of \(u_2(v_2)^\omega \). The rest of \(s \) is \(0^\omega \).

Why is \(s \) ultimately periodic? Let us write \(|l| \) for the length of a list of numbers \(l \) and \(\| l \| \) for the sum of its elements. Clearly, if there is at least one occurrence of \(\omega \) in \(u_1(v_1)^\omega \), then \(s \) is ultimately periodic. Otherwise, one can always find \(u_3, v_3 \) such that \(u_1(v_1)^\omega = u_3(v_3)^\omega \), \(u_2(v_2)^\omega = u_4(v_4)^\omega \), \(\| u_3 \| = |u_1| \) and \(\| v_3 \| = |v_2| \) by unfolding the prefixes and repeating the periodic patterns of \(u_1(v_1)^\omega \) and \(u_2(v_2)^\omega \) as much as required. The new words represent the same sequences and thus give rise to the same \(s \), and it follows from their definition that \(s \) is ultimately periodic with a prefix of length \(|u_3| \) and a periodic pattern of length \(|v_3| \).

The following examples illustrate composition in \(\mathcal{P} \).

\[
(3)^\omega * (2)^\omega = (2)^\omega * (3)^\omega = (6)^\omega \quad (10)^\omega + (01)^\omega = (0 0 1 0)^\omega
\]
\[
(01)^\omega * (10)^\omega = (0 1 0 0)^\omega \quad (2)^\omega + (0 1)^\omega = (1)^\omega
\]
\[
0(2)^\omega * (3 0 1)^\omega = 0(3 4 1)^\omega \quad 2(1)^\omega + 0(1)^\omega = (1)^\omega
\]
\[
(20)^\omega * (20)^\omega = (ω(0) + (1)^\omega = ω(0)^ω = (ω)^ω
\]
\[
(0 1)^\omega * (ω)^ω = 0(0)^ω = 0(ω)^ω \quad (ω)^ω + (0 0)^ω = (0)^ω
\]

Division The result of a time warp division \(u_1(v_1)^\omega \) \(u_2(v_2)^\omega \) is more complex to build than a composition. Intuitively, one produces new elements in the resulting sequence according to the next element \(n \) of \(u_2(v_2)^\omega \), accumulating the numbers present in \(u_1(v_1)^\omega \). If \(n > 0 \), then one outputs the current value of the accumulator, followed by \(n - 1 \) zeroes; if \(n = \omega \), the process stops. If \(n = 0 \), then one adds the current element in \(u_1(v_1)^\omega \) to the accumulator. Division by zero is a special case.

The following examples illustrate division in \(\mathcal{P} \).

\[
(1)^\omega \setminus (1)^\omega = (1)^\omega \quad (2)^\omega \setminus (2)^\omega = (0)^\omega \quad (4 0)^\omega \setminus (1 3)^\omega = (4 0 0)^\omega
\]
\[
(3)^\omega \setminus (0)^\omega = (0)^\omega \quad (3)^\omega \setminus (ω)^ω = 3(0)^\omega
\]

Evaluation A naive way to evaluate \((u(v)^\omega)(n) \) is to compute the sum of the first \(n \) elements of \(u(v)^\omega \).

Ordering We have \(u_1(v_1)^\omega \leq u_2(v_2)^\omega \) if and only if \(u_1(v_1)^\omega(n) \leq u_2(v_2)^\omega(n) \) for all \(1 \leq n \leq \max(|u_1|, |u_2|) + \text{ lcm}(|v_1|, |v_2|) \).

Infima and Suprema Binary infima and suprema can be computed using the above characterization of the ordering between elements of \(\mathcal{P} \).

A.6 Implementation

We have implemented the elaboration algorithm described in this paper, restricted to \(\mathcal{P} \). Our prototype is available at the address https://github.com/adrien-pulsar/pulsar.

Example programs, including the ones discussed in Section 1 and Section 2.4, and Section 6, can be found in the file.
Proof. Immediate, the judgment is syntax-directed.

Figure 12. Type-Checking Explicit Terms

B Selected Proofs
B.1 The Calculus

Notations We say that Γ' is a subcontext of Γ if Γ' is Γ with zero or more bindings removed (but not permuted). Given a context Γ and a finite set of variables X, we write $\Gamma|X$ for the largest subcontext of Γ such that dom($\Gamma|X$) $\subseteq X$. Given a context Γ and a time warp p, we write $\Gamma \circ p$ for the largest context (for the subcontext ordering) such that $\Sigma_p (\Gamma \circ p)$ is a subcontext of Γ.

We write $d ::= \Delta e : \tau$ when d is a derivation of $\Delta e : \tau$.

Type-Checking Explicit Terms The algorithmic type-checking judgment $\Delta e : \tau$ takes a context Γ and an explicit term e and returns a type τ. Its rules are given in Figure 12.

Metatheoretical Results

Property 10 (Determinism of Explicit Type-Checking). If $\Gamma e : \tau$ and $\Gamma e : \tau'$ then $\tau = \tau'$.

Proof. Immediate, the judgment is syntax-directed.

Property 11 (Soundness of Explicit Type-Checking). If $\Delta e : \tau$ then $\Gamma e : \tau$.

Proof. By induction on the derivation.

- Case EAlgVar: since $x : \text{dom}(\Gamma)$, Γ must be of the form $\Gamma', x : \tau, x_1 : t_1, \ldots, x_n : t_n$ for a certain Γ'. Let us denote $\sigma_w \in \Sigma(\Gamma', x : \tau)$ the inclusion map of $\text{dom}(\Gamma', x : \tau)$ into $\text{dom}(\Gamma)$. We conclude by deriving $\Gamma'' : x : \tau \vdash x : \tau$ by rule VAR and then applying rule STRUC with σ_w.

- Cases EAlgFun to EAlgRec, EAlgConst, EAlgSub: immediate application of induction hypotheses.

- Case EAlgWarp: by definition $\Sigma_p (\Gamma \circ p)$ is a subcontext of Γ. Let us denote $\sigma_w \in \Sigma(\Sigma_p (\Gamma \circ p) ; \Gamma)$ the corresponding inclusion map. By the induction hypothesis and rule WARP, we have $\Sigma_p (\Gamma \circ p) e : \tau$ by $p : \Sigma_p (\Gamma)$. We conclude by applying rule STRUC with σ_w.

Abusing notation, we write $d ::= \Delta e : \tau$ for the derivation built in the above proof. It is exactly the canonical derivation described in Property 3. Such a derivation can always be built.

Property 12 (Completeness of Explicit Type-Checking). If $\Gamma e : \tau$ then $\Gamma e : \tau$.

Property 13 (Uniqueness of Types for Explicit Terms). For any fixed τ and e, there is at most one type τ such that $\Gamma e : \tau$ holds.

Proof. Immediate consequence of Property 12 and Property 10.

B.2 Operational Semantics

The proof of Theorem 3.5 relies on three realizability predicates defined in Figure 13. They follow the usual structure of step-indexed logical relation, defining $\mathcal{V}(\tau_\alpha)$ by well-founded induction over the lexicographic order $\text{Lex}(\tau, \alpha)$ for the subterm ordering and τ_α the corresponding ordering.

![Figure 13. Realizability Predicates for Totality](https://example.com/figure13.png)

The most clauses are standard. We prove the fundamental property of logical relations, obtaining Theorem 3.5 as an immediate corollary.

Lemma B.1 (Fundamental Property). If $\Gamma e : \tau$ then $e \in \mathcal{E}(\Gamma, \tau)$.

As before, this proof relies on additional lemmas for each auxiliary judgment. Their statements are similar to the ones used for type safety, replacing syntactic typing with realizability.

B.3 Denotational Semantics

Interpretation of Structure Maps Consider an arbitrary structure map $\sigma \in \Sigma(\Gamma', \Gamma')$. Let us write Γ as $x_1 : t_1, \ldots, x_n : t_n$ and Γ' as $x'_1 : t'_1, \ldots, x'_m : t'_m$. Since contexts are interpreted as tuples, we define $[\sigma] : [\Gamma'] \rightarrow [\Gamma]$ as $f_i : [\Gamma'] \rightarrow [\Gamma]$ the ith projection out of $[\Gamma]$ for such that $\sigma(x_i) = x'_i$.
Coherence for Explicit Terms

Property 14. If $\Gamma \vdash e \Rightarrow \tau$ and $\sigma \in \Sigma(\Gamma; \Gamma')$ then $\Gamma' \vdash \sigma[e] \Rightarrow \tau$

\[
[d_1 : \Gamma' \vdash \sigma[e] \Rightarrow \tau] = [d_2 : \Gamma \vdash e \Rightarrow \tau] \circ [\sigma].
\]

Proof. By induction on d_1.

- Case Var: since $(\Gamma, x : \tau) \Rightarrow \tau$, $\Gamma, x : \tau \vdash x : \tau$ holds by definition. The corresponding derivation d_2 is formed of rule Var and rule Struct with $\sigma_\omega = \text{id}$. Hence $[d_2] = [d_1] \circ \text{id} = [d_1]$.

- Case Fun to Rec, Const, SubR: immediate application of induction hypotheses.

- Case VarP: we have $d_1' : \Gamma \vdash e : \tau$. The induction hypothesis gives $d_2' : \Gamma \vdash e \Rightarrow \tau$ with $[d_1'] = [d_2']$. Since $(\ast_p, \Gamma) \Rightarrow \tau$, we have $\ast_p \vdash e \Rightarrow \tau$ with a canonical derivation d_2' ending with an instance of rule Struct with $\sigma_\omega = \text{id}$. We conclude as in the Var case.

- Case SubL: we have $d_1' = \Gamma' \vdash e : \tau$ and $\beta : \Gamma' \Rightarrow \Gamma''$. The induction hypothesis gives $d_2' : \Gamma' \vdash e \Rightarrow \tau$. Since $\beta : \Gamma' \Rightarrow \Gamma''$, we have $\text{dom}(\beta) \subseteq \text{dom}(\Gamma'' \Rightarrow \Gamma'')$ by definition. Hence $[\Gamma_{\text{dom}(\beta)}] = \Gamma'$ and we have $\beta \vdash e \Rightarrow \tau$ with a canonical derivation d_2' using d_2' and ending with an instance of rule Struct with $\sigma_\omega = \text{id}$. We conclude as in the Var case.

- Case Struct: we have $d_1' : \Gamma \vdash e : \tau$. The induction hypothesis gives $d_2' : \Gamma \vdash e \Rightarrow \tau$ with $[d_1'] = [d_2']$. Applying Property 14, we obtain $d_2 = \Gamma' \vdash \sigma[e] \Rightarrow \tau$ with $[d_2'] = [d_2] \circ [\sigma]$. We conclude by transitivity.

\[\square\]

Property 15 directly implies Property 12.

Contexts We define contexts C in the usual way, as explicit terms with a single hole, with a plugging operation $\llbracket - \rrbracket$. We define operational equivalence as follows.

\[\llbracket C : (\Gamma \vdash \cdot : \tau) \Rightarrow (\Gamma' \vdash \cdot' : \tau')\rrbracket = \llbracket C[e] : \tau' \rrbracket\]

Operational Equivalence Programs can be discriminated by observing ground values at the first step, assuming the set of ground values contains at least booleans. Given two explicit terms $\Gamma \vdash e_1 : \tau$ and $\Gamma \vdash e_2 : \tau$, we define operational equivalence as follows.

\[
\Delta \text{Val} : (\Gamma \vdash e) \Rightarrow (\cdot : \tau), C[e_1] : \emptyset \downarrow_s \Leftrightarrow C[e_2] : \emptyset \downarrow_s
\]

Adequacy In order to relate our operational and denotational semantics, we embed the operational semantics inside S. For every type τ, we define a presheaf $\llbracket \cdot \rrbracket$ by

\[
\llbracket \cdot \rrbracket(n) = \{ v \in \text{Val} \mid v : \tau \Rightarrow n \}
\]

\[
\llbracket \cdot \rrbracket(n) \preceq m \Rightarrow \{ v : \tau \Rightarrow n \downarrow_n v \}.
\]

The results from Section 3 imply that $\llbracket \cdot \rrbracket$ is well-defined: determinism, type safety, and totality imply that $\llbracket \cdot \rrbracket$ is a function between the proper sets, and Property 5 indeed corresponds to functoriality. We apply the same idea to typing contexts, building a presheaf $\llbracket C \rrbracket$ of environments. For every well-typed explicit term $\Gamma \vdash e : \tau$, we build a natural transformation

\[
\llbracket e \rrbracket : \llbracket C \rrbracket \Rightarrow \llbracket \cdot \rrbracket
\]

Again, the results from Section 3 imply that this is well-defined. In particular, Property 6 corresponds to naturality.

We then introduce a logical relation $\llbracket \cdot \rrbracket$, which, intuitively, defines what it means for a point of $\llbracket \cdot \rrbracket$ to implement a point of $\llbracket \cdot \rrbracket$. Its definition is straightforward, given the close correspondence between values and denotational elements, and thus we elide it. We lift it to contexts/value pairs, obtaining a relation $\llbracket C \rrbracket$, between $\llbracket \cdot \rrbracket$ and $\llbracket \cdot \rrbracket$, and prove the fundamental property.

Lemma B.2. If $\Gamma \vdash e : \tau$ then $\llbracket e \rrbracket = \llbracket \cdot \rrbracket$.

Now, given two well-typed terms $\Gamma \vdash e_1, e_2 : \tau$, let us write $\Gamma \vdash e_1 \equiv e_2 : \tau$ when e_1 and e_2 implement the same denotation, that is, if there exists $f : \llbracket \cdot \rrbracket \Rightarrow \llbracket \cdot \rrbracket$ such that both $\llbracket e_1 \rrbracket \mapsto \llbracket f \rrbracket$ and $\llbracket e_2 \rrbracket \mapsto \llbracket f \rrbracket$. Such terms are indistinguishable in Core λ^*. This relation is a congruence.

Lemma B.3. If $\Gamma \vdash e \equiv e' : \tau$ and $C : (\Gamma \vdash \cdot : \tau)$ then $\Gamma' \vdash C[e] \equiv C[e'] : \tau'$.

We obtain adequacy as a corollary of Lemma B.2 and Lemma B.3.

B.4 Algorithmic Type Checking

B.4.1 Notations

As in the main body of the paper, we write $r_1 \llbracket \cdot \rrbracket : \llbracket r_2 \rrbracket$ to indicate the mere existence of some coercion $\alpha : r_1 \llbracket \cdot \rrbracket : \llbracket r_2 \rrbracket$, and similarly for $r_1 \equiv r_2$. We also write $\alpha_1 \llbracket \cdot \rrbracket : \llbracket \cdot \rrbracket$ and similarly $\alpha_1 \equiv \alpha_2 : \llbracket \cdot \rrbracket$ for

\[\llbracket \cdot \rrbracket(\alpha_1) : \llbracket \cdot \rrbracket(\alpha_2)\]

and similarly $\alpha_1 \equiv \alpha_2 : \llbracket \cdot \rrbracket$ for

\[\llbracket \cdot \rrbracket(\alpha_1) : \llbracket \cdot \rrbracket(\alpha_2)\]

B.4.2 Properties of Type Normalization

Property 17 (Idempotence of Normalization). We have

\[
\llbracket (\cdot) \rrbracket = \llbracket (\cdot) \rrbracket
\]

Proof. By induction on the size of \cdot.

\[\square\]
Property 18 (Confluence of Normalization). We have
\[
\{ τ_1 → τ_2 \} = \{ τ_1 \} = \{ τ_1 \} = \{ τ_2 \},
\]
(11)
\[
\{ τ_1 × τ_2 \} = \{ τ_1 \} × \{ τ_2 \} = \{ τ_1 \} × \{ τ_2 \},
\]
(12)
\[
\{ τ_1 + τ_2 \} = \{ τ_1 \} + \{ τ_2 \} = \{ τ_1 \} + \{ τ_2 \},
\]
(13)
\[
\{ ∗p τ \} = \{ ∗p (τ) \}.
\]
(14)

Property 19. For any τ, we have \{ τ \}_i : \{ τ \}_o \equiv \text{id} : τ → τ and \{ τ \}_i : \{ τ \}_o \equiv \text{id} : τ → τ.

Proof. By induction on the size of τ.

Lemma B.4. For any α_1 : τ_1 → τ_2, if there exists α_2 : τ_2 → τ_1, then \{ τ_1 \} = \{ τ_2 \}. Moreover α_1 \equiv \{ τ_1 \}_i : \{ τ_2 \}_o : τ_1 → τ_2 and α_2 \equiv \{ τ_2 \}_i : \{ τ_1 \}_o : τ_2 → τ_1.

Proof. By induction on α_1.

Corollary 3. For any (α_1, α_2) : τ_1 → τ_2, we have α_1; α_2 \equiv \text{id} : τ_1 → τ_2 and α_2; α_1 \equiv \text{id} : τ_2 → τ_1.

Theorem B.5. Type normalization is sound and complete for equivalence: τ_1 \equiv τ_2 iff \{ τ_1 \} = \{ τ_2 \}.

Proof. The right-to-left direction follows from \{ τ_1 \}_i : \{ τ_2 \}_o : τ_1 → τ_2 and \{ τ_2 \}_i : \{ τ_1 \}_o : τ_2 → τ_1. The left-to-right direction follows immediately from Lemma B.4.

B.4.3 Properties of Type Precedence

Lemma B.6. (Precedence is Reflexive). If τ is normal, \text{Prec}(τ; τ) is defined and moreover
\[
\text{Prec}(τ; τ) \equiv \text{id} : τ → τ.
\]

Lemma B.7 (Precedence is Transitive). If both \text{Prec}(τ_1; τ_2) and \text{Prec}(τ_2; τ_3) are defined, so is \text{Prec}(τ_1; τ_3), and moreover
\[
\text{Prec}(τ_1; τ_2) \land \text{Prec}(τ_2; τ_3) \equiv \text{Prec}(τ_1; τ_3) : τ_1 → τ_3.
\]

Lemma B.8 (Precedence and Normalization). If \text{Prec}(τ_1; τ_2) is defined, so is \text{Prec}(τ_1; τ_2), and moreover
\[
\text{Prec}(τ_1; τ_2) \equiv \{ τ_1 \}_i : \text{Prec}(τ_1; τ_2)_o : τ_1 → τ_2.
\]

B.5 Properties of Algorithmic Subtyping

Functoriality Properties

Lemma B.9 (Algorithmic Subtyping is Reflexive). For any type τ, \text{Coe}(τ; τ) is defined and moreover
\[
\text{Coe}(τ; τ) \equiv \text{id} : τ → τ.
\]

Lemma B.10 (Algorithmic Subtyping is Transitive). If \text{Coe}(τ_1; τ_2) and \text{Coe}(τ_2; τ_3) are defined, so is \text{Coe}(τ_1; τ_3), and moreover
\[
\text{Coe}(τ_1; τ_2) \land \text{Coe}(τ_2; τ_3) \equiv \text{Coe}(τ_1; τ_3) : τ_1 → τ_3.
\]

Lemma B.11 (Algorithmic Subtyping is a Congruence for Arrow Types). If both \text{Coe}(τ_1; τ_1) and \text{Coe}(τ_2; τ_4) are defined, then so is \text{Coe}(τ_1 → τ_2; τ_3 → τ_4), and moreover
\[
\text{Coe}(τ_1 → τ_2; τ_3 → τ_4) \equiv \text{Coe}(τ_3; τ_1) \rightarrow \text{Coe}(τ_2; τ_4) : τ_1 → τ_2 \rightarrow τ_3 → τ_4.
\]

Lemma B.12 (Algorithmic Subtyping is a Congruence for Product Types). If both \text{Coe}(τ_1; τ_3) and \text{Coe}(τ_2; τ_4) are defined, then so is \text{Coe}(τ_1 × τ_2; τ_3 × τ_4), and moreover
\[
\text{Coe}(τ_1 × τ_2; τ_3 × τ_4) \equiv \text{Coe}(τ_1; τ_3) \times \text{Coe}(τ_2; τ_4) : τ_1 × τ_2 \rightarrow τ_3 × τ_4.
\]

Lemma B.13 (Algorithmic Subtyping is a Congruence for Sum Types). If both \text{Coe}(τ_1; τ_3) and \text{Coe}(τ_2; τ_4) are defined, then so is \text{Coe}(τ_1 + τ_2; τ_3 + τ_4), and moreover
\[
\text{Coe}(τ_1 + τ_2; τ_3 + τ_4) \equiv \text{Coe}(τ_1; τ_3) + \text{Coe}(τ_2; τ_4) : τ_1 + τ_2 \rightarrow τ_3 + τ_4.
\]

Lemma B.14 (Algorithmic Subtyping is a Congruence for Warped Types). If \text{Coe}(τ_1; τ_2) is defined, then so is \text{Coe}(∗p τ_1; ∗p τ_2), and moreover
\[
\text{Coe}(∗p τ_1; ∗p τ_2) \equiv ∗p \text{Coe}(τ_1; τ_2) : ∗p τ_1 \rightarrow ∗p τ_2.
\]

B.5.1 Completeness

Lemma B.15 (Completeness of Algorithmic Subtyping for Invertible Coercions). If (α_1, α_2) : τ_1 \rightarrow τ_2, then \text{Coe}(τ_1; τ_2) is defined, and moreover
\[
\text{Coe}(τ_1; τ_2) \equiv α_1 : τ_1 \rightarrow τ_2.
\]

Lemma B.16 (Completeness of Algorithmic Subtyping for Delays). For any p, q and τ such that p \geq q, \text{Coe}(∗p τ; ∗q τ) is defined, and moreover
\[
\text{Coe}(∗p τ; ∗q τ) \equiv \text{delay}^{p−q} : ∗p τ \rightarrow ∗q τ.
\]

Proof. By Lemma B.6. \text{Prec}(τ; τ) is defined and equivalent to id. Thus, since p \geq q, by definition we have
\[
\text{Prec}(∗p τ; ∗q τ) \equiv (∗p \text{id}) : ∗p τ \rightarrow ∗q τ.
\]
By Lemma B.8, \text{Prec}(∗p τ; ∗q τ) is defined, and thus by definition so is \text{Coe}(∗p τ; ∗q τ). We have
\[
\text{Coe}(∗p τ; ∗q τ) \equiv \{ ∗p τ \}_i : \text{Prec}(∗p τ; ∗q τ)_o : ∗p τ → ∗q τ \equiv \text{Prec}(∗p τ; ∗q τ) \equiv \{ ∗p \text{id} \}_i : \text{delay}^{p−q} \equiv \text{delay}^{p−q}
\]
where the second equation follows from Lemma B.8.

Theorem B.17 (Completeness of Algorithmic Subtyping). If α : τ_1 \rightarrow τ_2, then \text{Coe}(τ_1; τ_2) is defined, and moreover
\[
\text{Coe}(τ_1; τ_2) \equiv α : τ_1 \rightarrow τ_2.
\]

Corollary B.18 (Coherence for Coercions). For any pair of coercions α_1 : τ_1 \rightarrow τ_2 and α_2 : τ_1 \rightarrow τ_2, we have α_1 \equiv α_2 : τ_1 \rightarrow τ_2.

Proof. By Theorem B.17. \text{Coe}(τ_1; τ_2) is defined and equivalent to both α_1 and α_2.

B.6 Context Division

Lemma B.19 (Completeness of Type Division). For any p and τ_1, we have τ_1 \rightarrow p(τ_1 \rightarrow p). Moreover, if τ_1 \rightarrow p(τ_1 \rightarrow p), then τ_1 \rightarrow p(τ_1 \rightarrow p).

Lemma B.20 (Completeness of Context Division). For any p and λ_1, we have G_1 \rightarrow p(λ_1 \rightarrow p). Moreover, if G_1 \rightarrow p(λ_1 \rightarrow p), then G_1 \rightarrow p(λ_1 \rightarrow p).
B.7 Properties of Type Bounds

Property 20. \(r_1 < \tau \) and \(r_2 < \tau \) iff \(r_1 \sqcup r_2 < \tau \).

Property 21. \(r < r_1 \) and \(r < r_2 \) iff \(r < r_1 \sqcap r_2 \).

B.8 Properties of Algorithmic Type Checking

Lemma B.21 (Elimination of Context Subtyping). If \(\text{Elab}(\Gamma', t) = (\tau, e) \), then for any \(\beta : \Gamma' : \tau \) exists \(\tau', e', \alpha, \alpha' > 0 \) such that

\[
\text{Elab}(\Gamma; t) = (\tau', e', \alpha; \alpha') : \tau < \tau \text{ and }
\]

\[
\Gamma \vdash \beta; e \equiv e'; \alpha : \alpha' : \tau.
\]

Proof. By induction on \(t \). The proof is mostly straightforward manipulations of induction hypotheses, so we only detail the crucial case of rule \textsc{AlgWarp}, where

\[
t' = t \text{ by } \rho \quad e = \text{Coe}(\Gamma'; \rho \backslash p); (e' \text{ by } \rho) \quad \tau = \rho \tau'
\]

with \((\tau', e') = \text{Elab}(\Gamma' \backslash p; t') \). By Lemma B.20 and Theorem B.17, we know that \(\text{Coe}(\Gamma; \rho \backslash p) \) is defined and that \(\Gamma \vdash p : \Gamma' \vdash p \) since \(\rho \vdash p : \Gamma' \vdash p \) by transitivity. By the induction hypothesis, we obtain \(\tau', e', \alpha, \alpha' \) such that \(\text{Elab}(\Gamma \backslash p; t') = (\tau', e', \alpha; \alpha') \) and

\[
\Gamma \vdash p \vdash \text{Coe}(\Gamma \backslash p; p' \backslash p); (e' \text{ by } p) \equiv e'; \alpha : \alpha'.
\]

Thus, by definition of \(\text{Elab}(\Gamma; t \vdash p) \), we must have \(\tau \equiv \rho \tau' \) and \(e \equiv \text{Coe}(\Gamma; \rho \backslash p) \), \((e' \text{ by } p) \). We take \(\alpha = \rho \alpha' \).

We have

\[
\beta \vdash \text{Coe}(\Gamma'; \rho \backslash p); (e' \text{ by } p)
\]

\[
\equiv \text{Coe}(\Gamma; \rho \backslash p); (e' \text{ by } p)
\]

\[
\equiv \text{Coe}(\Gamma; \rho \backslash p); (e' \text{ by } p)
\]

\[
\equiv \text{Coe}(\Gamma; \rho \backslash p); (e' \text{ by } p)
\]

\[
\equiv \text{Coe}(\Gamma; \rho \backslash p); (e' \text{ by } p)
\]

\[
\equiv \text{Coe}(\Gamma; \rho \backslash p); (e' \text{ by } p)
\]

\[
\equiv \text{Coe}(\Gamma; \rho \backslash p); (e' \text{ by } p)
\]

\[
\equiv \text{Coe}(\Gamma; \rho \backslash p); (e' \text{ by } p)
\]

\[
\equiv \text{Coe}(\Gamma; \rho \backslash p); (e' \text{ by } p)
\]

\[
\equiv \text{Coe}(\Gamma; \rho \backslash p); (e' \text{ by } p)
\]

where the first equation follows from Corollary B.18.

\(\square \)

Lemma B.22 (Algorithmic Type Checking Commutes with Structure Maps). If \(\text{Elab}(\Gamma; t) = (\tau, e) \) is defined, then for any \(\sigma \in \Sigma(\Gamma, \Gamma') \) we have \(\text{Elab}(\Gamma; \sigma[t]) = (\tau, \sigma[e]) \).

Theorem B.23 (Completeness of Algorithmic Type Checking). If \(\Gamma \vdash e : \tau \), there exists \(\tau, \alpha, \alpha' \) such that \(\text{Elab}(\Gamma; U(e)) = (\tau, \alpha, \alpha') \) and \(\alpha : \alpha' : \tau < \tau \), and moreover

\[
\Gamma \vdash e \equiv \text{Coe}(\Gamma; \rho \backslash p); (e' \text{ by } p) \equiv e'.
\]

Proof. By induction on the typing derivation. The proof relies on the properties and lemmas described in Section 6.6, Section 6.8, and Section 6.7, as well as Lemma B.21 and Lemma B.22.

\(\square \)

Corollary B.24 (Coherence for Implicit Terms). If \(\Gamma \vdash e : \tau, \Gamma \vdash e' : \tau \), and \(\text{U}(e) = \text{U}(e') \), then \(\Gamma \vdash e \equiv e' \).

Proof. By Theorem B.23 we have \(\tau, \alpha, \alpha' \), \(\tau, \alpha, \alpha' \) such that

\[
\text{Elab}(\Gamma; U(e)) = (\tau, \alpha, \alpha') \quad \alpha : \alpha' : \tau < \tau
\]

\[
[\Gamma \vdash e_1 : r_1] = [\alpha : \alpha'] \cdot [\Gamma \vdash \text{Coe}(\Gamma; \rho \backslash p) ; (e' \text{ by } p) \equiv e'].
\]

\[
\text{Elab}(\Gamma; U(e)) = (\tau, \alpha, \alpha') \quad \alpha : \alpha' : \tau < \tau
\]

\[
[\Gamma \vdash e_2 : r_2] = [\alpha : \alpha'] \cdot [\Gamma \vdash \text{Coe}(\Gamma; \rho \backslash p) ; (e' \text{ by } p) \equiv e'].
\]

Since \(\text{Elab}(\Gamma; U(e)) \) is a partial function, \(e''_1 = e''_2 \) and \(r''_1 = r''_2 \).

By Corollary B.18, \(a''_1 \equiv a''_2 : \tau < \tau \). We conclude by transitivity.

\(\square \)
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Pages</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Evaluation Judgment</td>
<td>6</td>
<td>Type Suprema and Infima for Normal Types</td>
<td>11</td>
</tr>
<tr>
<td>Iteration Judgment</td>
<td>6</td>
<td>Type-Checking Explicit Terms</td>
<td>13</td>
</tr>
<tr>
<td>Type Normalization and Precedence</td>
<td>9</td>
<td>Realizability Predicates for Totality</td>
<td>13</td>
</tr>
<tr>
<td>Elaboration</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coercions to and from Normal Types</td>
<td>11</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>